New interview online: Meet Maialen Zelaia Amilibia
We're excited to continue our interview series by sharing insights from Maialen Zelaia Amilibia from Vicomtech.
Within the Force Repair project, Vic...
Chronic wounds, clinically defined as wounds that usually do not heal in less than three months, affect up to 2% of the population in the industrial world, with incidents expected to rise significantly in the next years. However, current therapies remain insufficient and costly. To date, chronic wounds treatments have not been able to achieve reliable skin regeneration and reduce scar formation.
FORCE REPAIR aims to advance chronic wound management by developing a smart, multifunctional, and cost-effective 3D-printed wound dressing that effectively combats bacterial infections and inflammation, promotes healing, and relieves skin tension. This innovative dressing uses cutting-edge technologies such as nanocarriers, antibiotics, and anti-inflammatory drugs, along with pro-regenerative active ingredients. It will offer a sustained regenerative effect for a minimum of 15 days, which will greatly reduce the frequency at which nurses need to change the dressing. This will ultimately lead to a fully healed wound with a low likelihood of re-opening.
The FORCE REPAIR concept is based on a unique 3D printable hyaluronic acid-based self-healing hydrogel (HA-Ag-DH) with antibacterial and bioadhesive properties, which will maintain the moisture of the wound over a long period of time. The printable biomaterial will allow the placement of each component in a strategic location to fight infection and reduce inflammation to recreate the environment of healthy tissue.